Задачи на смеси и сплавы

  1. Сколько нужно взять 10% и 30% растворов марганцовки, чтобы получить 200 г 16% раствора марганцовки?
  2. Сколько граммов 35% раствора марганцовки надо добавить к 325 г воды, чтобы концентрация марганцовки в растворе составила 10%?
  3. Сколько граммов воды нужно добавить к 5% йодной настойке массой 100г, чтобы концентрация йода уменьшилась до 1%?
  4. Требуется приготовить 100г 10%-го раствора нашатырного спирта. Сколько для этого потребуется воды и 25%-го раствора нашатырного спирта?
  5. Собрали 8 кг свежих цветков ромашки, влажность которых 85%. После того как цветки высушили, их влажность составила 20%. Чему равна масса цветков ромашки после сушки?
  6. Имеется руда из двух пластов с содержанием меди 6% и 11%. Сколько надо взять «бедной» руды, чтобы при смешивании с «богатой» получить 20 т руды с содержанием меди 8%?
  7. Имеется два сосуда, содержащие 30 кг и 35 кг раствора кислоты различной концентрации. Если смешать оба раствора, то получится раствор, содержащий 46 % кислоты. Если смешать равные массы этих растворов, то получится раствор, содержащий 47% кислоты. Какова концентрация данных растворов?
  8. В сосуде объемом 10 л содержится 20%-й раствор соли. Из сосуда вылили 2 л раствора и долили 2 л воды, после чего раствор перемешали. Эту процедуру повторили ещё один раз. Определите концентрацию соли после первой и второй процедуры.
  9. Смешали 30%-ный раствор соляной кислоты с 10%-ным и получили 600г 15%-ного раствора. Сколько граммов каждого раствора было взято?
  10. Имеется кусок сплава меди с оловом массой 15 кг, содержащий 40% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав содержал 30% меди?
  11. Сколько чистой воды нужно добавить к 100г 60%-го раствора кислоты, чтобы получить 30%-ный раствор?
  12. К раствору, содержащему 40г соли, добавили 200г воды, после чего массовая доля растворенной соли уменьшилась на 10%. Сколько воды содержал раствор, и какова была в нем массовая доля соли?
  13. Первый сплав состоит из цинка и меди, входящих в него в отношении 1:2, а другой сплав содержит те же металлы в отношении 2:3. Из скольких частей обоих сплавов можно получить третий сплав, содержащий те же металлы в отношении 17:27?
  14.  Смешали некоторое количество 15%-го раствора некоторого вещества с таким же количеством 19%-го раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
  15.  Смешали 30%-ый раствор соляной кислоты с 10%-ным и получили 600г 15%-го раствора. Сколько граммов 10%-го раствора было взято?
  16. Имеется два сплава. Первый содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?
  17. Имеется два сплава с разным содержанием золота. В первом  сплаве содержится 35% золота, а во втором — 60%. В каком отношении надо взять первый и второй  сплавы, чтобы получить из них новый сплав, содержащий 40% золота?
  18. При смешивании первого раствора кислоты, концентрация которого 20%. и второго раствора этой ж кислоты концентрация которого 50%, получили раствор, содержащий 30% кислоты. В каком отношении были взяты первый  второй растворы?
  19. Смешали 3 литра 40%-го водного раствора некоторого вещества с 12 литрами 35%-го водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
  20. Смешали 8 литров 15%-го водного раствора некоторого вещества с 12 литрами 40%-го водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
  21. Смешали некоторое количество 17%-го раствора некоторого вещества со втрое большим количеством 9-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
  22. Смешали некоторое количество 14-процентного раствора некоторого вещества со вдвое большим количеством 8-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
  23. В сосуд, содержащий 5 литров 12% водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?
  24. Смешали некоторое количество 15% раствора некоторого вещества с таким же количеством 19% раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
  25. Смешали 4 литра 15% водного раствора некоторого вещества с 6 литрами 25% водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
  26. Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
  27. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
  28. Смешав 30% и 60% растворы кислоты и добавив 10 кг чистой воды, получили 36% раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50% раствора той же кислоты, то получили бы 41% раствор кислоты. Сколько килограммов 30% раствора использовали для получения смеси?
  29. Имеются два сосуда. Первый содержит 30 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?