Известный роман Жюля Верна «Таинственный остров» содержит  достаточно много математических рассуждений.

В этом романе,например, описан один из способов измерения высоких предметов.

– Сегодня нам надо измерить высоту площадки Дальнего Вида, – сказал инженер.
– Вам понадобится для этого инструмент? – спросил Герберт.
– Нет, не понадобится. Мы будем действовать несколько иначе, обратившись к не менее простому и точному способу.
Взяв прямой шест, футов 12 длиной, инженер измерил его возможно точнее, сравнивая со своим ростом, который был ему хорошо известен. Герберт же нёс за ним отвес: просто камень, привязанный к концу верёвки.

Не доходя футов 500 до гранитной стены, поднимавшейся отвесно, инженер воткнул шест фута на два в песок и, прочно укрепив его, поставил вертикально с помощью отвеса.
Затем он отошёл от шеста на такое расстояние, чтобы лёжа на песке, можно было на одной прямой линии видеть и конец шеста, и край гребня. Эту точку он тщательно пометил колышком.
– Тебе знакомы начатки геометрии? – спросил он Герберта, поднимаясь с земли.
– Да.
– Помнишь свойства подобных треугольников?
– Их сходные стороны пропорциональны.
– …Если мы измерим два расстояния: расстояние от колышка до основания шеста и расстояние от колышка до основания стены, то, зная высоту шеста, сможем вычислить четвёртый, неизвестный член пропорции, т. е. высоту стены.

Оба горизонтальных расстояния были измерены: меньшее равнялось 15 футам, большее – 500 футам.
По окончании измерений инженер составил следующую запись:

15 : 500 = 10 : х;
500 х 10 = 5000;
5000 : 15 = 333,3.

Значит, высота гранитной стены равнялась 333 футам.

img1

Математика в литературных произведениях