Задание 24. Окружность с центром на стороне АС треугольника ABC проходит через вершину С и касается прямой АВ в точке В. Найдите диаметр окружности, если АВ = 2, АС = 8.

Решение.

Сделаем построение, проведен радиус BO, который будет перпендикулярен стороне AB, так как AB – касательная к окружности по условию задачи (см. рисунок).

Введем обозначение OB=OC=r – радиусы окружности. Тогда отрезок . Выразим квадрат радиуса BO=r  из прямоугольного треугольника ABO по теореме Пифагора, получим следующее выражение:

Так как BO=r, получаем уравнение:

И диаметр окружности равен .

Ответ: 7,5.

Задание 24. Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника ABC. Окружность с диаметром ВН пересекает стороны АВ и СВ в точках Р и К соответственно. Найдите ВН, если РК = 12.

Решение.

Для решения данной задачи нужно вспомнить, что в любой окружности хорды, проведенные от ее диаметра, всегда пересекаются под углом в 90 градусов. Следовательно, точки P и K находятся на разных концах диаметра окружности, и так как PK=12, то и диаметр окружности равен 12. В задаче сказано, что BH – это диаметр окружности, значит, BH=PK=12.

Ответ: 12.

Задание 24. Биссектрисы углов А и В при боковой стороне АВ трапеции ABCD пересекаются в точке F. Найдите АВ, если AF = 24, BF = 18.

Решение.

У трапеции ABCD основания , следовательно, углы  как внутренние односторонние при параллельных прямых. По условию задачи AF и BF – биссектрисы соответствующих углов, тогда сумма углов

и, следовательно, угол  (так как сумма углов в треугольнике ABF равна 180 градусов). Таким образом, имеем прямоугольный треугольник AFB с гипотенузой AB, которую вычислим по теореме Пифагора: